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It is claimed that for all apparatus capable of performing macroscopic 
measurements of microscopic systems there exist special internal states for which 
deterministic quantum evolution alone yields a particular macroscopic outcome 
rather than a superposition of macroscopically distinct outcomes. We maintain 
that these special states are distributed uniformly (in a certain sense) among the 
set of all states. It is hypothesized that for all actually performed experiments 
the initial conditions lie among the special states. We postulate that in the 
absence of precise information on apparatus initial conditions one should give 
equal weight to those microstates that are consistent with the macroscopic state 
and are special in the sense used above. Evidence is presented for this postulate's 
recovering the usual quantum probabilities. This theory is fully deterministic, 
has no collapsing wave functions, and offers a resolution of the quantum 
measurement problem through a revision of the usual statistical mechanical 
handling of initial conditions. It requires a single wave function for the entire 
universe and an all encompassing conspiracy to arrange the right sort of special 
wave function for each experiment. In other words, an apparatus is in an 
appropriate microstate for the experiment that will actually happen even if an 
ostensibly random process is used to determine that experiment from among 
apparent alternatives. Although we do not provide physical or philosophical 
justification for our central hypothesis, some perspective is given by examining 
the notions implicit in the usual principles of thermodynamics. 
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1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF THE CENTRAL 
HYPOTHESIS 

Quantum measurement theory deals with the reconciliation of the 
microscopic with the macroscopic, a task which in a different context is 
associated with statistical mechanics. The definiteness of measurement at 
the macroscopic level is commonly explained either by momentary suspen- 
sion of the usual quantum evolution or by leaving the results of individual 
experiments undetermined by the theory, with the wave function bearing 
information about ensembles only. 1 In this paper we propose that the 
reconciliation can be achieved by a radical revision of our fundamental 
beliefs about a priori probabilities, and that this relieves us of any need to 
suspend quantum evolution as well as allows the use of the wave function 
to predict the results of individual experiments. The essential idea is that 
for a macroscopic measuring apparatus there exist microscopic states for 
which definite outcomes result under pure quantum evolution and that in 
actually performed experiments one or another of these special states occur 
as initial conditions. 

Consider a Stern-Gerlach apparatus that measures the z component 
of the spin of silver atoms that pass through it. The apparatus is assumed 
to perform a complete measurement, that is, it consists not merely of a 
magne~ with an inhomogeneous field but contains recording apparatus as 
well. For didactic purposes I will imagine the recording performed in an 
unusual but feasible way. The magnet sorts the beam into upper (say, for 
Sz-- +h/2) and lower beams and there are exit counters that respond to the 
presence of the Ag atom without rotating its spin. A pair of counters is 
placed so that an atom with appropriate spin triggers one or the other. 
(We assume beam intensity low enough to allow the recording of 
individual events.) The signal is sent to a typewriter that automatically 
prints the result of the experiment (e.g., "The particle triggered the upper 
counter and has spin +h/2"). Moreover, if this is necessary, we include a 
physicist watching the typewriter as part of the apparatus and with each 
burst of printing the page is scrutinized. During the time the measurement 
is taking place both system and apparatus are isolated. 

For  a quantum mechanical description of the experiment, let (p § and 
q~ be states of the silver atom which are (respectively +h/2 and -h i2 )  
eigenstates of sz, the z component of spin. Let co be a state of the apparatus 
before the experiment and as such a point in a Hilbert space of enormous 
complexity. Suppose the initial state is (p § co (the product form is adopted 

In this one sentence summary I do not attempt to convey the subtleues of the many views of 
measurement theory that have emerged in the last 60 years. See Refs. 1 3. 
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for convenience only). If H is the total Hamiltonian and T the time the 
atom takes to pass through the apparatus then the final state is 

(p+oJ+ = U(~o+o)) with U = e x p ( - i H T )  (1.1) 

where (#'+ is a spin-up state of the atom (the prime takes note of changes in 
spatial coordinates, for example the fact that the atom now has a slight 
upward motion conferred by the magnetic field), co+ is the final state of the 
apparatus and the " + "  emphasizes that it has macroscopic properties (the 
printed page) that testify to the atom's passage through the upper exit 
channel. Similarly 

(#" o9" = U(~o_~) (1.2) 

Consider an atom initially polarized along the + x  axis. With normalized 
q~'s its wave function is (q~ + + (p ) /x f2 .  By the superposition principle the 
experiment has the following eft~ct on it: 

, ,f5 (p'+ oJ+ + - - ~  q)' co' = u ( ~ + + ~ 0 ) c o  (1.3) 
,/2 

The quandary of measurement theory is somehow to go from the coherent 
superposition in (1.3) to measurements that definitely give one of the two 
answers, + or - .  For purposes of comparison we give a brief review of 
one conventional version of that justification, It is easiest to speak in terms 
of density matrices (see Ref. 2), which for the final state in (1.3) is 

, , ,? ,? , , ,1- O , ?  \ p = ( e) + cp + q),+ o) + co + (p + (p _ _ 
\co_(p,_c# ,+m,t+ co,_(p, (p !o~,t  _ )  (1.4) 

Comparison of p with experiment is achieved by forming Tr(pA)= ( A )  
where A is an observable to be measured. In this trace the contribution of 
the off diagonal matrix elements of p has the form r It 
appears to be an empirical fact that for ~o+ and co '  macroscopically dif- 
ferent it is not possible to produce laboratory apparatus to measure any 
observable for which (p'*+ (a'r '_ (p '  would be nonzero. 2 Therefore p can 
be replaced by an effective t~ consisting only of the diagonal elements of p, 
and the pure state ( T r p = T r p 2 = l )  has effectively become mixed 
(Tr~2<  1). And now, according to the statistical interpretation, one can- 
not for an individual experiment, make any further statements. Which non- 
zero entry on the diagonal of p actually occurs is not predicted by quantum 
mechanics. 

2 As men t ioned  in Ref. 2, the p h e n o m e n a  of superconduc t iv i ty  and  superf luidi ty c loud  the 
val id i ty  of this  s ta tement .  
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The first step in the theory to be presented in this paper is an assertion 
on the existence of certain special states of the apparatus. Although for the 
vast majority of apparatus states (~ equations (1.1)-(1.3) are true to 
excellent approximation, I claim that there exist special apparatus states (5 
with the property 

U ((p + + (p_) d) = ~0+ c~+ (1.5) 

That is, the particle goes out the upper exit channel and its wave function 
has support there only. Similarly there are (other) e5 for which the right- 
hand side of (1.5) is ~0"(5' . The special states e5 are macroscopically 
indistinguishable from ordinary states of the apparatus but have built in 
many precise coherences that manage to produce (1.5) (representing a 
definite result for the measurement). 

This assertion can be checked in principle within the context of 
ordinary quantum mechanics and in no way depends on interpretations. In 
this sense our theory is falsifiable: if there is an apparatus that makes 
definite measurements whose internal space is not rich enough to provide 
appropriate special states then the theory must fall. In later sections I shall 
argue for the existence of such states but for now let me remark that within 
statistical mechanics there are states that behave peculiarly but they are a 
tiny minority (of nonzero measure). There are states for which a raindrop 
collects on the ground and flies upward: just time reverse a fallen raindrop 
and the ground that received it and the air that picked up the faint sound 
of its fall. It turns out that the special states I need are harder to come by. 

Assume then that special states for definite measurements exist. I now 
make the central hypothesis of the theory: In all actual experiments the 
initial state is special; the microscopic state of the apparatus is perfectly 
attuned to giving a definite result for the particular input wave function of 
the system to be measured. "Actual" means an experiment that is actually 
done, not contemplated, not merely calculated and not idealized, for exam- 
ple, by replacing the complex currents giving rise to the magnetic field by a 
fixed field function B(r). 

Later in this paper I will try to make the foregoing hypothesis less 
unpalatable or at least pin down which of our fundamental intuitions it 
violates (it is the thermodynamic arrow of time that is seriously modified). 
But for now I want to convey the far reaching and perhaps disturbing con- 
sequences of our claim. It says that for each experiment the apparatus is 
ready for the system it will measure. If there is a beam then the final 
apparatus state after one measurement is a special state for the next incom- 
ing atom. Since for the spin polarized in the y direction [e.g., 
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(qo + + i~o _ ) / ~ ]  a different special apparatus state is needed, it claims the 
apparatus will be in the correct special state even if a y-polarized beam is 
suddenly fed into it, even if this sudden change is the result of an 
apparently whimsical decision of a human experimenter or random decay 
of a nucleus. Continuing this line of reasoning in what some may consider 
a reductio ad absurdum, I require that the entire universe be one tightly, 
coherently interconnected system, a single wave function. In particular each 
apparatus arranges itself in rare states so as to provide definite output for 
the atom coming its way. There can be no deviation from the plan and all 
time evolution is deterministic evolution under the Schr6dinger equation 
(or Dirac or QCD, etc.). The subjective perception of being able to control 
an experiment or change it at will must be considered in the present theory 
to be illusory. There is no delayed choice experiment because there is no 
choice. This paper is not the place to discuss the issue of free will and deter- 
minism or to wonder why we do or should strive when all is determined. In 
the context of classical mechanics these issues already arose and have long 
been the subject of philosophical discourse, c4 6) 

There is a sense in which this is a hidden variable theory, in that the 
particular internal state of the apparatus fixes the outcome of the 
measurement. But I would distinguish this from what is usually meant by 
hidden variables. I neither add degrees of freedom that are not already 
required nor is there any hidden pointer within the atom or anywhere else 
that says the initial superposition (~0+ + q) )/x/2 is secretly (say) spin-up. 
At the end of the experiment it will become spin-up but that will be by nor- 
mal interaction with electrons and other components of the apparatus that 
are poised to provide just the right pushes and pulls. The idea that the 
apparatus could force definite measurements was considered and proved 
impossible by Komar (v~ but he did not go so far as to suppose that for each 
experiment the initial conditions would be specifically tailored to a par- 
ticular outcome. 

Having required a grand wave function for the universe (and I believe 
the isotropy of background radiation suggests a causally linked early 
cosmology) and with it an all reaching conspiracy to provide definite 
results for measurements, the question arises as to why the usual 
regularities occur. Why, when a large number of seemingly identical 
experiments are considered, should this detailed conspiracy nevertheless 
give the usual ratios of different outcomes, namely, the probabilities given 
by ordinary quantum mechanics in which the details of the apparatus are 
ignored? For this we shall require an additional postulate, a variant of that 
used in statistical mechanics for similar purposes. The special states, 
although presumably rare among the set of all states, are nevertheless 
abundant. To predict the outcome of an experiment in which we know 
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firstly the macroscopic state of the apparatus and secondly that its 
microscopic state is some special state we give equal a priori  probability to 
each macroscopically suitable special state and average over these alone. If, 
as we shall later argue, this recovers the usual quantum probabilities then 
it will turn out that probability in quantum mechanics is no different from 
probability in statistical mechanics, namely, a democratic treatment of 
ignorance of the exact  initial state. 

In the next section we argue for the existence of the "special" states 
required in the theory. In Section 3 we discuss the arrow of time and con- 
sider our central hypothesis in that context. Following that we deal with 
the issue of recovering the usual quantum probabilities. Section 4 uses the 
probability postulate to relate the probability density for locating a particle 
to the absolute value squared of its wave function. The demonstration is 
made in the context of a semiclassical approximation. The last section is a 
discussion and summary. 

The radical hypothesis on the occurrence of special states as initial 
conditions in all actual physical processes naturally raises the question of 
why this should happen. Even if all my technical claims are substantiated 
there is still no indication of why special states should be favored or why 
this process should not suddenly stop and the world fade into a fuzzy 
superposition. As will be seen in Section 3, the postulating of special states 
is not unfamiliar and contemporary physics already includes such a notion. 
But the question remains and leads me to believe that what is presented in 
this paper is missing some important component. 

Finally there is the issue of experimental test. Since I have nothing but 
quantum evolution it is hard to see how contrasting predictions could 
emerge from this theory and the standard one. What is needed is a 
situation where standard measurement theory makes predictions beyond 
what is contained in the quantum equations alone. 

A brief description of the present theory has already been published. (8~ 

2. EX ISTENCE OF SPECIAL S T A T E S  

A special state is one that gives a definite measurement. A definite 
measurement occurs when the final result of an experiment is a pure state 
that is not a superposition of two or more macroscopically distinct states. 
This is not so much a definition as a distillation whose vagueness is due to 
the term "macroscopic." This vagueness however, is no more limiting here 
than in other contexts (e.g., defining classical entropy) and we proceed 
under its shadow. 

As in Section 1, we speak in terms of the Stern-Gerlach apparatus and 
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use the same notation. By the definition just given there are trivial special 
states. For  example, if the atom initially has spin-up essentially any initial 
apparatus state will give a definite result. 3 The interesting case is when for 
most initial apparatus states quantum mechanics requires a superposition 
of macroscopically distinct components. It is then our claim that there are 
special (initial) apparatus states for which only one component is reached 
under ordinary quantum evolution. 

We shall offer two sorts of argument. The first is qualitative and so 
general as to apply to all measurements. But our reasoning will be without 
force unless one accepts quantum evolution exclusively (no suspensions or 
variant dynamics for the period of wave function "collapse"). Moreover, it 
is a qualitative argument of the sort that lends itself to dispute. In the 
second line of reasoning we construct a model of a measurement device and 
actually exhibit the special states. The defect here will be that our 
gedankenapparatus is not a model of anything. It has properties suitable 
for a measuring apparatus but it would surely be preferable to have a real 
apparatus in mind. 

Suppose then that a Stern-Gerlach apparatus is set to measure the 
z component of the atom's spin and an atom is sent through that has been 
prepared in the + h/2 eigenstate of the x-component of spin. For  some par- 
ticular performing of the experiment suppose the atom passes through the 
upper counter (as described in Section 1) and is thereby determined to 
have s~ value + h/2. Now even for the statistical interpretation of quantum 
mechanics it is always the case that for each experiment the conservation 
laws are obeyed. Therefore in the particular experiment mentioned above 
(s~ ~ +h/2) there is a transfer of linear and angular momentum from the 
apparatus to the atom. By putting the counters well downstream the spatial 
precision needed to distinguish the upper exit channel from the lower one 
can be made small and the significant transfer of the conserved quantities 
takes p/ace at the magnet. In other words, the electrons that give rise to the 
field have picked up momentum and angular momentum, ultimately con- 
veying them to other degrees of freedom of the isolated apparatus. So there 
was momentum transfer to (say) the electrons during the course of the 
bending that occurred in the particular experiment performed. Can that 

3 Recall however that Wigner, Yanase, and Araki have shown in papers appearing in Ref. l 
that  it is impossible for the scheme always to work. For this reason and because the usual 
spin-up ~ spin-up result is good only in the adiabalic approximation,  arbitrary initial con- 
ditions will in general lead to a small component  of the wave function in the spin-down final 
state. Therefore even in this case it is not trivial to produce "special states" and it must  be 
checked that the dimension of the subspace of states which go entirely to spin-up compared 
to the relatively small dimension going to spin-down has the ratio appropriate to the usual 
calculated wave function. (See Section 3 for discussion of probabilities and subspace dimen- 
sion.) 
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transfer be described by quan tum mechanics? It will not  be an easy 
calculation but it falls in the domain  of quan tum mechanical  evolution no 
less than does the m o m e n t u m  transfer calculation for C o m p t o n  scattering. 
Of course the final passage through the counters will seriously dislocate the 
phase relation between the final a tom state and its state before it triggered 
the counter, But that  passage does not  eliminate the acquisition of momen-  
tum by the magnet  part  of the apparatus  nor  does it preclude the quan tum 
mechanical  description of that acquisition. 

We continue to work from the end to the beginning. The upward 
moving (in positive time) a tom 4 and disturbed magnet  are next followed 
back through their quan tum evolution to their respective states just prior 
to the a tom's  entering the inhomogeneous  field. The state of the a tom is 
known:  (r247 + q ) _ ) / ~ ,  by preparation. The state of the apparatus,  
including magnet,  at this early time is something, call i~ coo. But this co0 has 
the property that if we now go forward in time it takes the system from 
(~o + + ~o _ ) / ~  to ~o'+ alone. It is therefore a "special" state. 

As indicated earlier, I would not  be surprised if the well-honed inter- 
pretive resources of the statistical approach  would find flaws in the fore- 
going so I expect I am not  doing more than preaching to the converted. 
Moreover,  the demonst ra t ion may  fall th rough completely in the face of 
Everett 's "relative state" interpretat ion (9) of quan tum mechanics. 

One consequence of the existence of special states for the Stern-Ger- 
lach apparatus  is that  there are initial states for which an incoming spin-up 
state does not  emerge as spin-up [e.g., use the a5 of Eq. (1.5)]. It should be 
mentioned therefore that even a conventional  t reatment  ignoring the 
microscopic coordinates of the magnet  (and not  invoking Wigner, Araki, 
and Yanase) yields an occasional flip since the usual conclusion is true only 
in the adiabatic approximat ion (see Re[  2, Section 18). In fact were it not  
for this approximat ion  a naive t reatment  of the transverse fields (B x and 
By) necessarily accompanying  the noncons tan t  B e predicts that  spin flips 

4 Here is where holders of the standard interpretation would find my argument unconvincing. 
In the usual description, immediately preceding the triggering of the counter the wave 
function had support in both channels and although the measurement ultimately revealed 
the particle to be in the upper channel it is meaningless to ascribe a particular channel to it 
before the measurement. But once again I appeal to conservation laws. Calling the vertical 
direction z, if the magnet conveys zip, to the atom and the detection process conveys 6p. 
(due to distinguishing between upper and lower channels), then so long as p,Sp~ t<]Ap,[ 
knowing the momentum after the detection gives a range of possible momentum values 
before the detection that is sufficiently accurate to pin down the atom's previous channel. On 
the face of it, making the detector far from the magnet allows ]3p~ I to be arbitrarily small but 
having seen many subtle arguments of this sort I am prepared to admit the possibility that 
there is some unbeatable combination of uncertainties to preclude the Pz determination I 
require. 
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should often occur. This suggests that the place to start in looking for 
special states of this apparatus would be in the breakdown of the adiabatic 
approximation. 

In the second approach to showing the existence of special states we 
consider a model of a measuring apparatus, show in what sense the model 
has properties suitable to such a designation, and display the special states. 
We cal! the apparatus a "detector" (or a small sensitive region within a 
detector) and call the system or object whose position is measured a "par- 
ticle." But these names are a convenience and at the least our model suffers 
from being an oversimplification. 

In the forthcoming discussion we shall talk about phonons, particles, 
atoms, etc. without the explicit quotation marks heretofore employed. This 
is mainly for convenience although it is hoped that the terminology is not 
completely irrelevant. The detector consists of large clusters of identical 
atoms grouped in many sensitive units of various shapes, sizes and orien- 
tations, like the grains in a film. The atoms are in a metastable level. With 
the passage of the particle they are strongly coupled to phonons in the 
environment and decay. These first-level phonons are in turn coupled to 
other modes (second-level phonons) and their energy is spread among 
them. The particle to be detected is an atom in its excited state. That is, we 
do not detect the atom, which is always assumed to have gone through the 
detector, but only whether, during its passage, it was in some particular 
excited state of interest. The traversing atom will therefore be treated as a 
two level system, its ground state the vacuum and opt the operator that 
raises it to the excited state of interest. The only role for its center-of-mass 
coordinates is to carry it through the detector so that the time interval 
during which a grain (an elementary subunit of the detector--a sensitive 
cluster) is exposed to the particle depends on its velocity and the size, 
shape, and orientation of the grain. Conceivably the center-of-mass coor- 
dinate could be deflected by detection, as in the Stern Gertach experiment, 
but we will ignore this and assume that the macroscopic measurement 
message will be carried by the second level of phonons. We also idealize the 
atoms of the detector as two-level systems and their associated creation 
operators are labeled a~, k = 1,..., M. The first-level phonons in the grain 
have creation operators bJ, j =  1,..., N~ These interact strongly with the 
atoms in the presence of the particle. For the creation operators of the 
other phonon modes, into which the b modes make their leisurely decay, 
we use the notation c t, although we shall not actually make any calculation 
involving them. The free Hamiltonian, when the particle is far from the 
detectors, will be taken to be of the form 

M N 

Ho= Z Ea;ak+ 2 o~jbfbj (2.1) 
k 1 j 1 

822/42/3-4-29 
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where considerable simplifications have already been made: The free 
Hamiltonian of the c's is ignored; their energies are well below E. The b-c 
coupling is ignored as it will be much weaker and play no role on the time 
scale for detection. The range of coj is assumed to be a narrow band around 
E, [ -  co o + E, coo + El.  We are omitting the energy difference of the states 
of the particle since we assume its effect already incorporated in the a and b 
energies. Within a particular cluster we assume that on the average one 
detector atom is excited initially and that all the atoms couple to all the b 
phonon modes in the same way. In particular the coupling is taken to be 

1 M ,~v 

H,=--R,~g  2 Y', b~ak~~176 (2.2) 
x/ev k = l  / = l  

The factor 1 / , , ~  provides the correct scaling to allow a transition to a 
continuum for the b levels. We have in mind that 1 ~ M ~ N .  

If T is the time for the particle to traverse a particular cluster, the time 
evolution operator of interest is U=exp[-i(Ho + H~)T]. For an initial 
state O=~o*a~ 10) the final state will be UO, where we do not indicate 
evolution under Ho for t outside the interval [0, T] since it does not affect 
the measurement. As mentioned above, b-c coupling is negligible during 
[0, T] but its subsequent effect is that the b levels have a slow, exponential, 
irreversible decay (1~ into the c levels. For sufficiently large energy dif- 
ference between b and c levels there can be considerable amplification and 
a macroscopic event recorded. 

Define the span of the vectors a2cp t 10), k = 1,..., M to be L~ and that 
of b] [0), j =  1,..., N to be Lb. Call the associated projection operators P ,  
and Pb, respectively. 

In the conventional interpretation of quantum mechanics, the 
probability that a grain detects the particle will be ]]PhUO]I 2, that is, the 
norm squared of the amplitude characterizing the decay of the detector 
atoms. The probability of traversal without detection is the norm squared 
of the amplitude for remaining in La, namely ]rPaUOJ[ 2. Our goal in 
developing this model is to show that there exist special initial conditions 0" 
of the model, consistent with the macroscopic state, for which it is trans- 
mitted completely, i.e., Pb UO= O, and (other) special states 0" for which it is 
absorbed completely, PaUi~=O. The macroscopic state in this case is 
characterized by the fact that there is one detector atom per grain initially 
excited, that is, 52~= 1 a~ak has expectation value 1, and that the b's are not 
excited, that is, Zy= 1 bJbj is zero. It is likely that to obtain special states for 
some kinds of apparatus finite temperature effects will be needed, which for 
microscopic apparatus states translates into allowing some initial excitation 
in the b's, deviations in the distribution of excitation among the a's, (in dif- 
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ferent clusters) as well as a tolerance of imprecision in the final state. We 
shall not need such effects in the present model (except possibly the last) 
but that may be due to its artificiality and for realistic systems the super- 
ficially random thermal fluctuations may be important in the formation of 
special states, as they would be for our atypical raindrop mentioned in the 
Introduction. 

The model presented is rather simple to analyze and this is done in 
Appendix A. The high degree of degeneracy (M) arising from the weakly 
coupled large number of detector atoms in the grain allows us to produce a 
class of perfectly transmitting states, namely, all 0 of the form 

M M M 

0T= 10), 1 (2.3t 
k = l  k = l  k = l  

The span of such states forms an ( M -  1)-dimensional space in which each 
point is an eigenstate of rio and of 52~= ~ a~ak with eigenvalue l, and is also 
an eigenstate of Ho + HI so that the evolution U does no more than mul- 
tiply 0r  by a phase factor; moreover, P~ UO r = U~r. 

The overresponsive state for which UO lies entirely in Lb can be gotten 
from the remaining dimension of Lo, namely, 

M 

OA=cp*M t/2 2 a~ 10) (2.4) 
k = l  

may be totally absorbed. However, as shown in Appendix A it is not 
totally absorbed at all times but only at T such that 

g r , f - M =  (n + �89 n = 0 ,  1 .... (2.5) 

And even so the absorption is incomplete by a term of order co~/g2M. 
Therefore in a given experiment and in a given piece of the macroscopic 
detector not all grains will be suitable for total absorption. If the detector is 
rich enough in the variety of its clusters to have one for which the traversal 
time (of that particular cluster) and degeneracy are suitably related then it 
will in fact have the special state needed for absorption. As to the 
O(co2/g2M) discrepancy, it is very small (I expect large values of M and 
rather strong coupling during the period of interaction) and I do not know 
whether in principle it must be exactly zero. Perhaps this is where thermal 
fluctuations play a role. 

These then, subject to the deficiencies indicated, are the special states 
needed for total transmission or detection of the particle. 

Note finally that we have not considered initial states with com- 
ponents in the space Span(a2 101), that is, with no initial excitation of the 
atom. In our model there is no possibility of absorbing these vectors corn- 
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pletely since no mechanism by which this state communicates with L a and 
L b is given. This would be the analog of neglecting deviations from the 
adiabatic approximation (or other similar features) in the Stern-Gerlach 
experiment. 

3. HYPOTHESES ABOUT MICROSTATES 

The central hypothesis of the theory presented here is that for each 
actual experiment the initial microscopic state is "special," that is, is one of 
those that gives a definite macroscopic result. Although I can offer neither 
justification nor rationale for this assumption, I do wish to give perspective. 
What will now be shown is that in ordinary statistical mechanics we are 
already familiar with the idea that given a macrostate only certain par- 
ticular microstates can appear. Such a restriction on the final state in an 
isolated experiment is standard. The radical step of the present theory is to 
place restrictions on initial conditions as well. The radical step is thus inter- 
preted as a departure from the thermodynamic arrow of time or alter- 
natively as a change in our rules for assigning a priori  probabilities. 

First we present a particular way of defining the thermodynamic 
arrow of time. ~ that at 2 p.m. there is a cup of water with an ice 
cube floating in it. The system is left isolated for an hour and we wish to 
predict the state at 3 p.m. By the principles of statistical mechanics we 
proceed as follows: Consider all microstates consistent with the 
macroscopic description (water temperature, etc.) at 2 p.m. Let each of 
these evolve by appropriate microscopic equations of motion and then 
average over the resulting 3 p.m. microstates. The result is less ice and 
colder water. A small minority of microstates do not conform but their 
effect is lost in the averaging. (For a model on which these calculations can 
be implemented see Kac. (12~) This is an example of the fundamental prin- 
ciple giving equal a priori  probability to all microstates consistent with a 
given macrostate. 

Suppose further that the system was isolated for an hour prior to 
2 p.m. and we inquire ias to its 1 p.m. state. Giving equal a priori  

probability to all microstates consistent with the 2 p.m. macrostates would 
give less ice and colder water at 1 p.m. as well, by the time symmetry s of 
the evolution. But all experience indicates that there is more ice and war- 
mer water at 1 p.m., so there clearly must be a different rule for handling 
probabilities when deducing the past (retrodicting). It is this: Consider 
hypothetical macrostates at 1 p.m. and evolve them forward using exact 

5 Full-time symmetry is not needed to reach this conclusion, as for example in Ref. 12 where 
the inverse process differs from the forward process but time reversal paradoxes still hold. 
Similarly, I do not expect Tviolat ion in weak interactions to invalidate my conclusions. 
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dynamics and equal probabilities for all microstates consistent with the 
hypothetical 1 p.m. macrostate. One p.m. macrostates that yield the 2 p.m. 
macrostate in this way are possible i p.m. states. This asymmetry in the 
way of handling prediction and retrodiction is one way of phrasing the 
thermodynamic arrow of time. 

Coming back to an observed 2 p.m. macrostate, what can be said of its 
microstates? The answer depends on whether that state is considered a~ 
initial or final condition. In particular, as a final state only a small (but 
finite measure) and precisely determined subset of the microstates is accep- 
table. That  precision is beyond all conceivable experimental art. In other 
words, if you come across a floating ice cube that was isolated for some 
period prior to your observation, to the extent that you try to imagine its 
earlier condition, you must ascribe to Nature a conspiracy 6 to have it in 
those special microstates that lead backwards to reasonable precursors, 
larger ice cubes, warmer water. 

Our central hypothesis, which places severe restrictions on possible 
initial conditions, is therefore not so far fetched in that it limits microstates 
from among many plausible candidates but in that it does this for initial 
conditions. In this sense our central hypothesis is a denial of the apparent 
arrow of time. 

The next question we take up has to do with recovering the ordinary. 
Why is it, if there is an all encompassing conspiracy to have every initial 
condition be special and rare, that things do not look that way? If every 
precursor is uniquely and improbably selected, how do we recover the 
usual regularities? Or, to put the question more concretely: Why if an 
experiment is performed many times are the results given by the usual 
probabilities of quantum mechanics? Why, for example, if an sx-polarized 
beam is sent into the Stern-Gerlach apparatus described above will 
roughly half the events give s~-up and half s~-down? 

For this we require an additional postulate, a modification of the 
usual probability rule of statistical mechanics. Consider the region of phase 
space W associated with some macrostate of the apparatus. 7 It has a con- 

6 The "conspiracy" is similar to that needed for our theory in that far-flung events in the 
universe must  be coordinated and the particular microstate takes into account distant 
occurrences as well. For example, suppose our nominally isolated glass of water and ice was 
struck by a cosmic ray at 1:30 p.m. Then the 2 p.m. microstate used to get a bigger ice cube 
at 1 p.m. must  include this event for if it did no~ the rapid divergence and instability of 
microscopic evolution would cause the ice cube to shrink as we got to eartier and earlier 
times before 1:30. 

7 For ease of presentation the discussion is phrased in classical terms but the implementation, 
as for example in the "detector" model to be given below, is quan tum mechanical. The "con- 
voluted subsets" of the classical description are subspaces of the apparatus Hilbert space in 
the quan tum treatment. 
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voluted subset W' that corresponds to the special states. Ordinarily in 
making macroscopic predictions one averages over W. We postulate that 
macroscopic predictions are gotten by averaging over W' alone. That is, to 
make predictions from initial macroscopic conditions give equal weight to 
all microstates that are both "special" and consistent with the macrostate. 
("Special" here has the meaning defined earlier in this paper.) We claim 
that with this postulate the outcomes of an oft-repeated experiment are 
given by the usual squared amplitudes of the system to be measured. This 
is a strong assertion since it requires the relative weight of apparatus states 
capable of achieving a particular "definite" result to be proportional to 
squared amplitudes in the system to be measured. 

As for our earlier statements on the existence of "special" states we will 
try to justify our claim in two ways--the first general but incomplete and 
the second based on our "detector" model and thereby weakened by its 
limitations. Before beginning this justification however we wish to consider 
some implications of the postulate. 

Quantum probability, by this postulate, is no different from classical 
probability; both arise from ignorance of exact initial conditions. Just as for 
classical dice, if in quantum mechanics we know the exact initial point in 
phase space we would know the outcome; in the absence of such 
knowledge the probability of various outcomes follows the relative weight 
of acceptable initial states (acceptability for quantum systems includes the 
property of giving "definite" outcomes). 

Next we address one of the less precisely worded versions of the 
question posed earlier. Why if only a tiny subset of phase space is allowed, 
does everything look normal? For this problem I will review an example 
studied some years ago (13) in which initial conditions are an intricately 
interwoven subset of a macroscopic subset of phase space and in which for 
all purposes not related to the specific definitions of that interweaving the 
system behaves normally--i.e., as if averaging were being done over the 
entire macroscopic subset. 

The system studied was the well-known (14) automorphism ~ of the 
unit square ~(x) - x + y, ~(y)  = x + 2y, both assignments modulo 1. The 
fact that this transformation is mixing makes it easy to see equilibration, 
for example in the following way. Make a coarse graining, that is, divide 
the square into M - N  2 grains where grain ( i , j )  is the subset 
G o -  {(x, y)[ i -  1 ~ N x  < i, j -  l <~ Ny < j} ,  i, j =  1 ..... N. Specifying a grain 
will be taken to represent the providing of the best macroscopic infor- 
mation available. If we watch the evolution of the points in a single grain 
they will rapidly spread throughout the unit square. This can be made 
quantitative by defining the entropy S(V) of a set V with respect to the 
coarse graining. 
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Let s 

where # is Lebesgue measure on ~2. Define the tth iterate of ~ to be ~, ,  
i.e., ~ o = 1 , ~ 1 = ~ , ~ , = ~ o ~ ,  1. Now take Vt to be ~,(G11). Clearly 
S(Vo) = 0. Moreover, it follows from the mixing property that #(V,  ~ Go. ) 
tends to 1/M as t ~ ~ so that S(Vr) tends to log M corresponding to com- 
plete lack of information about the system's location. (In making analogies 
to classical mechanics the square should be thought of as phase space.) 

In Ref. 13 we studied the effect of giving information about the system 
at two different times. Our purpose was to give symmetric boundary con- 
ditions in time (rather than initial conditions) so that other possible sour- 
ces of asymmetry (such as expansion of the universe) could be considered. 
The procedure was to start the system in one grain, say Gt~, and insist that 
at some fixed time T ( > 0 )  it reach a particular (possibly other) grain, say 
G24. This was implemented computationally (15~ by starting a point in Gll , 
taking T time steps, and discarding all points that did not end in G24. 
Analytically the set of acceptable initial conditions was Glt c~45 r(G24). 
Call this set V' and its forward images in time V',, t = 1, 2,.... 

We have recalled this example to mention one property of V',: It 
equilibrates in the same way, same shape, same time constants, as V,. That 
is, for small t (and large T) the function S(V',) is indistinguishable from 
S(V,): both make their way from 0 to a fluctuating behavior around log M. 
Eventually, as t ~ T, S(V',) will begin to decrease as V', collects itself into 
G24. But the detailed, sensitive information needed to accomplish this was 
not in evidence for small t and the special subset V' could as well have been 
all of V. 

Now suppose that instead of averaging over all of V we averaged over 
a set of points randomly selected from V. For  an independent selection 
process all expectation values should converge to the averages over V as 
the number of points goes to infinity. We claim that our obtaining ordinary 
behavior for S(V',) for small t follows from the pseudorandom distribution 
of the points of V' among those of V. By "pseudorandom" we mean that 
even though V' is deterministically selected by time T properties, 
correlations between time T and time 0 are greatly reduced due to the 
mixing property of the transformation (for large T). Therefore for sets and 
observables defined in terms of time T macroscopics the deviation from 
true randomness is nil. 

Our "special" states for the definiteness of quantum measurements are 
analogous to those just defined in that they are characterized by the 

8 This is not the Kolmogorov entropy defined in Ref. 14. 
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demand that at some (far) future time the system have well-defined 
macroscopic properties. We will use this analogy at two levels. The first 
level is simply to get one used to the idea that a system can have hidden 
internal correlations but that if one studies observables not specifically 
attuned to these correlations they will be invisible. 

The second level brings us back to a demonstration promised earlier, 
namely, showing that averaging over the "special" states of the apparatus 
restores the probabilities obtained in the standard interpretation of quan- 
tum mechanics. Now we declare at the outset that the first set of arguments 
we shall give is incomplete. But a weak proof  does not imply a false 
theorem and we expect there to be salvageable parts to our demonstration. 

The discussion will be in terms of the Stern-Gerlach apparatus. To say 
that the result of a measurement was "spin-up" means both that the 
typewriter printed the appropriate statement and that the atom's wave 
function was more or less entirely located at the upper exit channel. 
Therefore if Z+(Z-) is the characteristic function (as a function of the 
atom's spatial coordinates) of the region around the upper (lower) exit 
channel, then at the end of the experiment the (scalar) quantity 

rt for+ COt i ~o + +Z+ +~0+ has the value 1. Now suppose the initial atomic state is 
some 0 = 7 + ~0 + + ~_ ~o _ with 1~ + 12 + I~-  [ 2 = 1. Then the special states are 

'Co' ~o' (5'.  those (5 for which U((oO) is either (p + + or _ It is our goal to show 
that the relative abundance of the respective kinds of (5 is proportional  to 
Ic~+ 12 and [ e  ] 2. Using the notation introduced above, this means we must 
show that 

J !  ~- C - 1 Z  (U(o~0)[ ~__ [ U ( ( ~ O ) )  = I~12 
o3 

(3.2) 

where the sum is over all special states and the normalization C is the same 
in both equations. Define a function/5(co), co e (2 to be 1/C for special states 
(for the particular experimental setup, i.e., the particular c~_+), zero 
otherwise. (We ignore technical problems such as infinities in C.) Then the 
sum in (3.2) can be taken over all states co ~ t2 

J_+ =~/5(co)<u(coO)l x• IU(coo)> (3.3) 
60 

The function /5(09) is extremely complicated, analogous to the (charac- 
teristic function of the) set V' discussed above. Should it happen that with 
respect to the expectation value of interest it has a pseudorandom charac- 
ter then/5(09) can be replaced by p(co), the function on (2 that picks out 
those microstates of (2 consistent with the given macroscopic conditions. 
This is just the usual density matrix. Replace then/5 in (3.3) by p and con- 
sider U(coO). This is now a standard calculation and for the vast majority 
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I CO~ i CO' of co it is simply c~+~0+ + + ~  ~0_ _. Inserting this in (3.3) with p 
replacing ~ yields 

_ r g r CO1 J_+=~]p(co)Ee+~o'+co++~ qol_co ' ]+Z+L +~o+ + + ~  ~o' co' ] (3.4) 
co 

The cross terms ~+_~T drop out by orthogonality of the macroscopic 
states and cp'~Z_+~0' T = 0  so that we have for J+ the values I~+12, as 
desired. 

There are two major lacunae in this argument. First, since 
q0'tco t, ,  co' ~,' is 1 (for any (5) why could we not have chosen [in + + L +  -t- "f" + 

Eq. (3.2)] its 15th power rather than its first? This would have given a dif- 
ferent answer in (3.4). Second, assumptions of pseudorandomness are 
appropriate when the conditioning that defines the pseudorandom subset is 
unrelated to the quantity being measured. In our case the conditioning is 
related to a distinguished time, the very time at which the expectation is 
evaluated. True, we are not conditioning on a particular outcome of the 
experiment, only that it have an outcome, but this still seems a serious 
liability. 

Concerning the first lacuna, we shall later present evidence that when 
a wave function has some spread in space the probability of seizing the par- 
ticle in a particular region is proportional to the absolute value squared of 
its wave function, locally. The evidence will be in the context of a scattering 
problem. Concerning the pseudorandomness we do not know how to 
improve our argument. 

We next turn to the detector model to see how the relative availability of 
special states for various outcomes determines probabilities. 

Suppose it is found that with a certain beam velocity, in a large detector 
consisting of many subunits of the sort described above ("grains"), the 
probability per grain of absorption is PA, a rather small number. Let M be 
the closest integer to 1/pA and consider clusters of size M [-same "M" as in 
Eq. (2.1)] for which the passage time of atoms in the beam through the 
cluster satisfies T =  ~/2g ,~f-M. If there are no such clusters this apparatus 
will not serve as a measuring device. (In fact this is a general claim we 
make: the usual demands of amplification and practical irreversibility are 
not the only requirements for real measurement devices. In addition suf- 
ficient dynamical richness is needed to produce special states.) These par- 
ticular clusters provide the desired special states. Consider first a particle 
that is detected. For  this the internal state of one of these particular clusters 
is taken to be ga = q)*M-1/22a~ 10) of Eq. (2.4), giving a single dimen- 
sion of the cluster Hilbert space for complete detection, as discussed in Sec- 
tion 2. All other clusters are in their totally transmitting internal states 
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(which require no tailoring of the passage time). For perfect transmission 
through the entire apparatus, i.e., no detection, our particular cluster is in 
the ( M -  1)-dimensional subspace of the cluster that provides perfect trans- 
mission [cf. Eq. (2.3)] and all other clusters are perfectly transmitting as 
well. The relative number of dimensions for detection compared to non- 
detection is therefore 1/(M-1) or (1/M)/[(M-1)/M], which by the 
choice of M is p•/(1- PA). It remains only to justify the identification of 
the counting of dimensions in Hilbert space with the assignment of equal a 
priori probabilities. But by the correspondence principle phase space 
volumes with characteristic dimension h to the appropriate power become 
individual levels for the quantum system, that is to say, dimensions in the 
Hilbert space. Thus our axiom for the assignment of a priori probabilities 
in the apparatus Hilbert space (count dimensions) is consistent with the 
classical assignment. Of course this is the same correspondence that justifies 
the trace operation (which gives equal weight to each dimension) in quan- 
tum calculations as the replacement for the phase space integral ~ dNp dNq. 

Finally, although we make no case for our model as an accurate 
description of any particular physical measuring device we wish to point 
out at least one reasonable property it possesses and respond to one 
possible criticism. Since the response of a single cluster is extremely small 
(PA~I) the full detector must have many such grains including many 
suitable for producing special states. Each such grain acts as a single 
coherent object independent of the others so that the probability of non- 
detection in two such clusters is the product of the probabilities for non- 
detection in each. This gives the detector the reasonable physical property 
of exponential dropoff of the probability for nondetection with increasing 
(macroscopic) length of detector material. (This is to be contrasted with 
increasing the size of individual grains for which such a property will not 
obtain.) 

Next we respond to the following possible criticism: Consider an 
ordinary calculation of total absorption probability for this detector. There 
is some distribution of cluster sizes, shapes, perhaps also of coupling con- 
stant g. In each size L cluster one can perform a calculation of the sort 
given at the end of Appendix A. There will be probability ( L -  1)/L of 
transmission because of degeneracy but now the Lth dimension is also 
partly transmitting because the passage time is not taking any special value 

(i.e., T~ rc/2g w/L, necessarily). Thus if one goes to calculate overall trans- 
mission of a large detector, including features like the distribution of L's 
and time, why should it turn out that the transmission probability per 
grain be l/M? The fallacy of this question is that it reverses the logic of the 
selection of the M clusters. First we study the detector and calculate the 
absorption per grain to be PA (also g is fixed by microscopic con- 
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siderations). After this we look for grains of order [l /pAl.  Thus we make 
no a priori assumptions on cluster size distribution except that there should 
be some grains of size M (but not that, e.g., the distribution peak there). 

4. I~ (x ) l  2 AS POSITION PROBABIL ITY DENSITY 

Our goal in this section is limited. It is not to show that we can 
produce special states for an arbitrary scattering experiment. Rather we 
wish to demonstrate that under certain particular conditions the absolute 
value squared of the wave function is the probability density for 
localization. In particular, and with the same disclaimers as to generality, 
we show that the relative dimension of special states that can localize a 
particle in a region around a point x is proportional to 10(x)l 2 

Consider a particle emitted by an appropriate device into a small 
spatial region around x 0. In the usual approach to this problem no features 
of the emitter would be called into play and the initial wave function would 
be some 0o with a spread given by Ao= [~ ( y - xo )  210o(y)l 2 dy] 1/2. Upon 
emission the particle is subjected to a very slowly varying potential V. At 
some later time T an attempt is made to detect the particle in a 
neighborhood dx of a position x. The probability of success is 
q@(x, T)I 2 dx. ~b(x, T) is gotten from 0o using the propagator G(x, T; y) 
and the circumstances outlined justify the use of the semiclassical 
approximation for G. If we further assume that for the given x 0, x, T, and 
V there are no turning points, ~ is given by [Ref. 16, Eq. (13.10)] 

( i  023 ~1/2 c(i/h)S(x'T;Y)Oo(Y) (4.1) 
tp(x, T) = f dy \2rch ~?x@) 

where S =  S(x, T; y) is the classical action, the integral of the Lagrangian 
along the classical path (solution of Euler-Lagrange equations) from y to x 
in time T. (To avoid confusion: S is here a function only of x, T, and y. It 
is the value of the functional S[x(. )] along the classical path determined 
by x, T and y.) If A o is small on all pertinent scales then we can simply 
approximate O(x, T) by 

i 02S )1/2 
O(x, T)= 2rch ~XOXo) e(i/~)s(x'r;x~ (4.2) 

(This formula breaks down, for example at large x, since 0 remains square 
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integrable.) Denoting the probability of finding the particle in the region dx 
around x by P(x, dx) and taking note of the reality of S we have 

1 ~72S 
P(x, dx)=2-~h ~ dx (4.3) 

Now we ask whether there are special states into which the emitter can 
deliver the particle so that it finds itself at time T more or less entirely 
localized at x, Again we remind the reader that we do not now attempt to 
display "special" states for all scattering experiments, but are tailoring this 
problem to allow an interpretation of the wave function under at least 
some, perhaps unusual, circumstances. We assume then that for most of its 
internal states the apparatus produces a wave function ~9 o which is far from 
minimal uncertainty and that although h/A o is large the spread in momenta 
is generally even larger than that. As special states we will take minimal 
uncertainty wave packets, thereby implicitly assuming that for rare initial 
conditions the emitter can produce them. The minimum uncertainty 
packets can be taken to be coherent states of an oscillator Hamiltonian 
whose ground state spatial uncertainty is A o and the states are labeled 
Ixo, P0), the real and imaginary parts (modulo , /2 's ,  etc.) of the usual 
complex label. Under Schr6dinger evolution in the potential V, and again 
invoking the smoothness of V, these packets will follow the classical trajec- 
tory of a particle with initial momentum P0, starting from xo (the oscillator 
Hamiltonian only defines states, not dynamics). If the original packet O0 
was badly nonminimal then our minimal packets need not spread 
significantly (both statements made with respect to the particular time T). 
If the detector at x has resolution poorer than the spread packet then these 
packets may serve as special states. 

Next we count the relative dimension of the spaces of packets that 
arrive at various x, so as to compare to (4.3). Coherent states are not con- 
venient for dimension counting since they are overcomplete, but as is well 
known an appropriately spaced regular lattice in the plane of complex 
labels does provide a countable complete basis set (there is one state too 
many but we ignore this). Since this label plane is essentially phase space 
for the particle we are considering, we can take the dimension of a collec- 
tion of states Ixo, Pa> to be proportional to the classical phase space they 
occupy. This converts our problem into a simple question of classical 
mechanics: What range of initial momenta [Po, po+dpo] (with initial 
position x0) brings the system into Ix, x + dx] at time 7?. In fact all we 
want is dpo/dx, the relative number for each x. But here the role of the 
classical action as the solution of the Hamilton-Jacobi equation comes into 
play. P0 is given by -•S/6xo (see Ref. 17 or 16). Since our interest is in the 
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change allowed this quantity for a specific variation in x we can in fact con- 
clude that the relative probability for reaching various x is 102S/Ox~xol. 
That is, 

Dimension of special states arriving in [x, x + dx] 

oc phase space volume of initial momenta that 
reach Ix, x + dx ] 

O S(x,T;xo) 
oc OXOXo dx (4.4) 

This is proportional to P(x, dx) of Eq. (4.3), justifying the use of the wave 
function for position probability density, at least under these special cir- 
cumstances. 

Having argued in what we hope has been a persuasive manner, we 
next discuss weaknesses and implicit assumptions. The dimensions we 
counted were in the particle Hilbert space. In principle we should count the 
dimensions of the emitter apparatus required for the production of various 
momenta. Since the emitter has not been described at all we can only offer 
the following justification. The high degree of localization achieved implies 
that momenta of interest here are small on the scale of energies involved in 
the localized emission process. Therefore if the required coherent states can 
be produced at all it should not much matter how much momentum must 
be imparted since so much is available. This gives equal emitter internal 
state space size for each p. 

Next we point out that the special states we have presented must of 
necessity be flawed and some of our glib semiclassical approximations 
break down under circumstances only slightly different from those 
described above. For  suppose it is possible that a second classical path can 
reach x from Xo. This can happen if V rises sufficiently sharply and T is 
long enough, circumstances that need not invalidate the usual semi- 
classical approach. The propagator will be a sum of two terms of the form 

~ 1/2 Sxy ) exp(iS~(x, T; y)/h) (e = 1, 2) with S ~ the action along the respective 
classical path. Again for ~o sharp enough the dominant behavior in the 
probability function will come from the interference term cos[(S 1 -  S2)/h] 
with y evaluated at Xo. Superficially this looks like disaster for the 
proposed postulate that probabilities reflect dimensions of suitable special 
states. This is because each action S ~, c~ = 1, 2, has a corresponding initial 
momentum p~= -~S~/~Xo and the packets Ixo, Po)  can independently be 
sent to x. Thus the dimensions should add and no interference occur. Nor 
is there rescue from the claim that superpositions of these two special states 
would interfere, because they do not. This follows from the near 
orthogonality of the IXo, p~) (the lattice coherent state basis is complete 
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but not orthonormal, but the overlap drops off sharply with the separation 
of the p's) and the unitarity of the evolution U. Thus 

(U(xo, p')[U(xo, p2))= (xop~lxop2)~1 (4.5) 

and despite the presence of both packets in a small neighborhood of x they 
remain nearly orthogonal. 

But this last observation shows that if all my semiclassical 
assumptions were correct in the two-path case a standard calculation 
would show no interference either. For one could decompose the packet q)o 
into a superposition of momentum states which in some approximation 
reflects a decomposition into coherent states of reasonably well-defined 
momentum. In evaluating the probability of detection we compute a matrix 
element ( ~ l l  U lt)o ) with ~91 a form determined by the detector. In this 
inner product-- i f  our earlier semiclassical considerations are valid--all 
terms but those corresponding to the momenta pi and p2 will drop out and 
because of the same orthogonality properties mentioned above, no inter- 
ference will occur. That is, in the standard quantum calculation the inter- 
ference term comes precisely from the overlap integral (Up2lUp j) and 
since this is presumed small here too there will be no interference. What is 
happening is that in order for the original argument to go through a badly 
nonminimal wave packet was needed and if such a sloppy emitter were 
used in a situation where reflection occurred the interference pattern would 
be wiped out. 

The conclusion then is that the coherent states are not candidates for 
special states under all circumstances but if some circumstances do in fact 
allow their use, the square of the absolute value of the wave function 
emerges as a position probability density. 

Finally, as alluded to earlier in this section, scattering theory in 
general presents a challenge, since from the moment of emission to that of 
detection a pair of scattered particles may not interact with any 
macroscopic apparatus and yet the general theoretical framework seems to 
require that the scattered wave function organize itself entirely into the 
region of the detector, which may be located at some specific scattering 
angle. On the other hand, we are used to thinking of scattered wave 
functions as having the form f(O; k)eik'/r, not focused in one particular 
angle. The only latitude we have is the wave packet leaving the emitter. Is 
it possible to find an initial wave packet that gathers itself into only some 
small angle in its final state? This question is most acute for Coulomb scat- 
tering which is the nearest thing (neglecting Q.E.D.) to a pure elementary 
potential and it is least easy to fall back on the argument that most 
interatomic (say) potentials are only effective interactions built from large 
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numbers of internal degrees of freedom which may do the tailoring. Rather 
surprisingly, preliminary calculations with A. Young of The University of 
Texas suggest that indeed such tailoring is possible and that the 
remarkable coincidence of the Rutherford scattering cross section for 
classical and quantum mechanics is what justifies the probability inter- 
pretation. But this will be the subject of a later publication. 

5. D I S C U S S I O N  A N D  S U M M A R Y  

The problem of quantum measurement theory is that when quantum 
mechanics is applied to macroscopic systems it seems to predict that there 
occur superpositions of macroscopically distinct states. Not only are such 
states absent in our ordinary perception of the world but even if one found 
a way to justify the (apparent) fact that in an experiment only one of these 
macroscopic states is selected there seems no mechanism or dynamical law 
for this selection. 

In this paper we have proposed that the measurement problem does 
not lie in the nature of quantum evolution but in certain assumptions 
about a priori probabilities implicit in the usual transition from the 
microscopic to the macroscopic. Our approach revolves about a claim, a 
hypothesis and a postulate. 

The claim is that there exist special microscopic states of measuring 
equipment for which the outcome of an experiment is definite, that is, is 
not a superposition of macroscopically distinct states. This is called a claim 
because it can be verified--or falsified within the context of ordinary 
quantum calculations, at least in principle. 

The hypothesis is that in all actual experiments, that is, those perfor- 
med as opposed to contemplated, the initial conditions are among the 
(possibly rare) special states whose existence is claimed. 

The postulate is that in the absence of microscopic information about 
apparatus initial conditions the relative probability of various outcomes is 
proportional to the relative dimension of the apparatus subspace of special 
states associated with each outcome. 

The object of the paper has been to present and render plausible these 
theses, not to provide for example a definitive proof that in all measuring 
apparatus there are special states. In this framework we have also taken 
liberties in the presentation of incomplete arguments, pointing out however 
their defects. 

The claimed existence of special states is a prediction of sorts. Apart 
from this claim, what have generally been considered the characteristic 
properties of a measuring apparatus were amplification and irreversibility. 
Now we have imposed a further, subtle requirement on the internal state 
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structure. For our model detection apparatus (Section 2) this requirement 
was satisfied through the presence of a high degree of degeneracy and 
uniform coupling of the associated levels to other degrees of freedom. This 
does not seem unreasonable in an apparatus with highly repetitive arrays, 
for example the many molecules in a photographic emulsion. Although 
other sorts of special states may exist, degeneracy could turn out to be a 
common theme in numerous measurement techniques. This is suggested by 
the relation between quantum degeneracy and classical regular behavior 
and the connection of the latter to the appearance of KAM tori in classical 
dynamical systems. (~* 2o) Further discussion on special states in scattering 
theory (hence for decaying particles) is given in Section 4. Recent studies of 
quantum tunneling (2~-23) may provide a more detailed picture of the 
measurement process--treated entirely quantum mechanically--than has 
heretofore been known. The SQUIDs and other devices modeled by these 
theories may provide a clear picture of special states as well as suggest 
experiments in case there are differences from standard quantum predic- 
tions, for example due to problems in producing fully overresponsive states. 

By the standards of contemporary hyperbole our central hypothesis 
could be called a quantum superconspiracy. 9 We offer no explanation for 
this limitation on our apparent ability to set up arbitrary initial conditions 
and the associated modification of the usual ideas on the arrow of time. 
For as we pointed out in Section 3 our theory not only has the usual 
restrictions on microscopic final states but limits initial states as well. 

On this point, however, some historical perspective may be in order. 
Boltzmann had no idea why final states should be "distinguished," where 
we use this term to refer to the usual restriction as discussed in Section 3. 
Speculation in his time suggested that the observed universe was a large 
fluctuation and the thermodynamic arrow due to a return to equilibrium. 
And just as I cannot explain why the quantum conspiracy should not sud- 

9 A point that has been raised is that with a superconspiracy anything can happen, for exam- 
ple waterfalls that reverse direction each Friday between 2 and 3 p.m. This is in fact true, as 
it is within the usual statistical mechanics. Consider however why we do not  (usually) see 
reversing waterfalls: For the macroscopically observed waterfall at 1:59, few of its 
microstates will lead to its reversal at 2:00 (This is not  so much "why" as how we calculate 
the likelihood). Waterfalls do not reverse in the present view by exactly the same rationale: 
For those microstates that are consistent with the 1:59 macrostate and are special few lead to 
reversal at 2 p.m. This is the purport  of our earlier discussion on "recovering the ordinary" 
and is why the presence of the superconspiracy is not generally noticed. This line of reason- 
ing however does lead to an interesting possibility. The quantitative likelihood of certain 
fluctuations may be different because the available state space is reduced. Hence for bor- 
derline-sized fluctuations (not Niagara Falls) the state space restriction may have quan- 
titative implications. 
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denly terminate and our world fade into a superposition, so they could not 
justify the belief that memory corresponded to real occurrences, since the 
entropic cost of an earthquake is surely less than that of its recording in a 
human brain. 

Since Boltzmann's time there has come new information on the 
universe. Presumably the occurrence of distinguished final states, that is the 
thermodynamic arrow of time, is a consequence of the expansion of the 
universe. During expansion regions of phase space open up that describe 
states that are macroscopically different from earlier configurations. 
Equilibration does not catch up with expansion, entropy increases and 
acceptable final states are only those that proceed from earlier states of a 
more compact universe. How the global process influences local 
phenomena is a separate question, presumably answerable although 
attempted answers are often clouded since the questions are not always 
sharply defined. 

In any case, if our central hypothesis is correct its justification may lie 
in an unanticipated physical phenomenon or perhaps in the nature of per- 
ception. We earlier glossed over the problem of defining the term 
"macroscopic." The subjective or anthropomorphic nature of this term 
suggests that our perception may filter out non-"definite" outcomes of 
experiments. At this level of speculation one might tie in to Wigner's view 
of the role of the observer. (See his first article in Ref. 1) Our point in men- 
tioning these ideas and the quandary of Boltzmann's day is not to point to 
some particular rationale for our central hypothesis but only to note that 
failure to see a complete picture does not mean that those features that are 
visible are false. 

Our central hypothesis seems possible only in particular cosmologies, 
namely, those in which the universe is causally interconnected. This follows 
from our requirement on the coherence of the global wave function. On 
this scale the nonlocal effects in the Einstein-Podolsky-Rosen phenomenon 
seem mild. As mentioned in the Introduction delayed choice experiments, 
embellishments of the EPR phenomenon, present no problem to us since 
the existence of choice is an illusion. 

Our postulate relating the internal state space of an apparatus to 
quantum probabilities is another thesis subject to falsification or perhaps to 
surprising verification. As for our claim on special states, there is at least in 
principle the possibility of calculating the properties of various sorts of 
measuring devices. However, it should be noted that this postulate could be 
false and our claim and central hypothesis true. Then there would be the 
burden of justifying the recovery of the usual quantum probabilities in 
some other way. 

The traditional test of a theory is an experiment. Unfortunately we do 

822/42/3-4-30 
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not know of any observation that could choose between our understanding 
of quantum mechanics and others. As noted in the Introduction this is 
because our hypothesis involves no departure from quantum mechanics 
and it would take a prediction of the other theories that went beyond 
quantum mechanics before a confrontation could develop. Our postulate 
on probabilities since it does go beyond quantum mechanics could be 
subject to experimental test. For this one would need precise knowledge of 
some apparatus with deviations from the usual quantum probabilities 
occurring perhaps for extremely small versions of the apparatus. 

Most of the puzzles of quantum measurement theory involve distance 
scales of the order 10 - 4  to 10 6 cm, the border between macroscopic and 
microscopic. In contrast to the view implicit in some other theories we do 
not compromise quantum mechanics on this scale or any other (but with 
open mindedness on what 15 more orders of magnitude could bring). 
There is no observational reason, other than the measurement problem, 
to doubt quantum theory at this level. Now the measurement problem, 
dealing as it does with the macroscopic world, has both statistical and 
dynamical assumptions. It is the statistical assumptions we would modify. 
The usual rule for a priori probabilities, that is, give equal weight to all 
microstates consistent with a macrostate, has never been tested experimen- 
tally at the level we have been discussing, although its violation contradicts 
deeply held intuitions. It is that usual rule that we radically modify through 
the rejection of all initial states except those yielding definite macroscopic 
outcomes. 
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APPENDIX A 

On the space L a | L b the Hamiltonian H =  H o + H 1 is equivalent to 
the matrix K', 

i 0 
~ " ' E  

g' g' 

, g ,  

g' ... g ' \  

g' . . .  g' 

co1 

0 co N 

(A1) 

where g' = g/x/-N, the upper left block is the M x M identity times E, the 
upper right block is an M x  N rectangular matrix every one of whose 
entries is g', etc. 

The first claim made in the text is that Or of Eq. (2.3) is an eigenstate 
of H. For the matrix representation this amounts to the claim that a 
column vector whose first M entries add to zero and whose remaining 
entries are zero is an eigenvector of K'. This is obviously true. 

Showing that the remaining dimension in La can map almost entirely 
into L b is more complicated. Define e (~ to be the column vector whose first 

M entries are 1/x/-M and remaining entries zero. Let e (~), k = 1,..., N be a 
vector with a one in the ( M + k ) t h  row, i.e., the kth row in Lb, zero 
elsewhere. By direct calculation 

N 

K'e(~ = Ee(~ + 2' ~ e ( J ) ,  

j = l  

K'e(J) = ~' e (o) + Coje (j), 

1 1 

j =  1,..., N (A2) 

With no loss of generality we take E = 0 since only an irrelevant phase may 
be changed�9 From (A2) it follows that the modes of La corresponding to OT 
are completely decoupled and the matrix K' can be replaced by the 
( N +  1) x ( N +  1) matrix K 

K =  7' " ' .  �9 
@ 

l 
(o  N 

(A3) 
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We want the time dependence of a state with initial condition e (~ In par- 
ticular, we want to justify our claim, made in the text, that at certain times 
given approximately by T =  (n + �89 r~/g ~ n = 0, 1 .... the system lies 
almost entirely in Lb. To do this we shall show that 

,5(T) - e (~ exp( - iKT) e (~ = O(co20/g2M) (A4) 

where coje [ - coo ,  COo]. The "narrow band" feature of the phonons is taken 
to mean co g ~ g2 and therefore co2,~ Mg2. We shall also assume that N is 
even and that the levels coj are symmetric about zero. We shall establish 
(A4) using an eigenvector expansion for exp ( - iK T) .  

Let v be an eigenvector of K with components x 0, x 1 ..... x N and eigen- 
value 2. Then Kv = 2v implies 

N 

~' ~ x j =  ;tXo 
: = 1 (A5) 

Xo7' + cokXk = 2x~, k = 1,..., N 

Combining, we obtain a consistency condition determining 2 

1 N 1 (A6) 7 2 ~ j Y "  ,~ - % 

and the form of the eigenvector 

7 Xo k = l  ..... N 
Xk--N~ ~--CO k' 

(A7) 
~2 1 

j=~ \ 2 - c o i l  A 

the last expression fixed by the normalization v tv=  1. Defining 
f (2 )  = N 1 '~j.N 1 ()L--(,Oj) -1, we note the following features of the curve 
f (2 )  versus 2. For large positive (negative) 2 it is positive (negative) and 
drops off like const/L For Z immediately to the right (left) of any coj it is 
large and positive (negative). The solutions of (A6) are the intersections of 
f (2)  with the line 2/V 2. There will be N -  1 such intersections in the interval 
[ - coo ,  coo], one between each pair of cofs, and a pair of symmetrically dis- 
posed roots far from this interval for 7 > a)o- Symmetry of the set of co]s 
under reflection about zero implies the same property for the set of 2's. We 
shall not need further information on the eigenvalues clustered in 
[ - coo ,  coo] but we shall determine properties of the large [2[ solution. 

To lowest order in 09o/7 the co's in the denominator of f can be neglec- 
ted [this can be seen by defining a new unknown as 2/7 and deriving its 
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equation from (A6)]. This gives 2 =  • Correction to this expression 
depends on the details of the density of states. Since - 2  is also a solution 
of (A6) it follows that 2 = - 7 2 f ( - 2 )  is also true. Adding this to (A6) and 
dividing by 22 yields 1 = 72 ~ ( 2 2 -  co~) -1 or 

2 2 1 r~f 1 (~j~4 1 (as)  
y--7= 1 + N Z  T + N Z  \)~ ] 2 -ooj  

Neglecting the second sum, we set N t y. oJ~ = noCO~ where the constant no 
is of order unity and depends on the density of states. The resulting 
quadratic equation yields 

7 2 

l noog~ [ {(~2) ~ (A9) 
A~Tqt-2 T - - 7  1 q-O \ 7 2 / J  

where only one of the roots of the original quadratic is taken since the 
other yields a value of 2 of small absolute value, contradicting the 
assumptions used in its derivation. (The foregoing manipulations can be 
carried out in the continuum approximation to all orders in COo/7 for a con- 
slant density of states. Solving the resulting transcendental equation gives 
(A9) as the first-order correction to )~ =7 .) 

The N +  1 eigenvalues and eigenvectors are labeled 2 , ,  v (') and we 
define the matrix V to have v (') as its nth column. Thus 

Vmn ~ 71(n) =m 

V r = _ V  1 

W V =  V W  o 

v~ ) = mth component of v (') 

where WD = diag(2o, 2~ ,..., 2N) 

(A10) 

where V(o ") is the same as x 0 in (A7) with 2, replacing 2. Under time 
evolution v ( ' ) - - - ) e x p ( - i 2 ,  T) v ~') and the expression 6(T)  of Eq. (A4) 
becomes 

N 
5 ( T )  = ~, (u(n)) 2 e - ~ " r  (a12) 

n=0 

The second equality follows from the orthonormality of the eigenvectors of 
the real, Hermitian matrix K whose eigenvalues are nondegenerate. To 
evolve e (~ in time we express it in terms of v ('). Using V - l =  V T this 
expression is 

N 
e (~ ~ V~o")V(") (Al l )  

n=0 
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Let the two large eigenvalues of K be i (>0)  and - 2  (the numbering is 
irrelevant). The respective zero components of their eigenvectors are equal 
(by symmetry of the oJ's) so that for times T such that cos i T =  0 their 
combined contribution to the sum in (A12) vanishes. This will be taken to 
be the time needed to obtain "total" absorption, for which the expression 
given in Eq. (2.5) is an approximation. Let Z '  represent the sum over 
eigenvalues other than 2 and - 2  and let fi designate 16(T)I at one of the 
times for which cos 2 T =  0. Then 

(~ = Z '  (/')(On)) 2 C i)~nT ~ Z'  (V(0 n))2 (A13) 

By (VVT)oO -- 1 the sum in (A13) is one minus the sum over i and - i  
alone, Since the two latter terms are equal we have 

3 ~ < 1 _ 2 [ 1 + y  2 1 N 1 ] ~ 
-NkY"~= (2 --m~) ~ (A14) 

where the explicit form for the zeroth component is used. Let 

fi, e l  ~ 1 
= y  ~ 1 (A15) 

=1  ( i  - ~Ok) 2 

Then if we show fi '= O(co~/y 2) it will follow that (5 is of the same (small) 
order. 

Again by the symmetry of the coj's the sum in (A14) is the same for 2 
and - i  so that 

1 2 1 ~  1 
y 21 

- ~ 5 ~ 2  (1 + 0~/i2)(1 - 0 ~ / i  2) 2_ 1 (116) 

Since 1IN times the sum gives 1 + O(og/2 2) and since i2/7 2 is 1 + O(co~/y 2) 
it follows that 6 ' =  O(cog/? 2) or 3' = O(o~/g2M), with the same consequence 
for c5. 

Finally we wish to show that for undistinguished initial conditions the 
probability for detection in this cluster is 1/M. As an initial state in L o we 
take 

O=OtEfika*k]O) E l f l k [ 2 = l  (A17) 

with either a uniform distribution in the fi's or a particular fik unity, the 
others zero. Reexpress 0 in terms of e (~ and the other (totally unrespon- 
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sive) vectors  in  La.  T h e  la t te r  s tay in  La whi le  e t~ goes a lmos t  comple te ly  

to Lb. The  p r o b a b i l i t y  of a b s o r p t i o n  will therefore  be  the abso lu t e  va lue  

squa red  of  the coefficient of  e ~~ in  a n  e x p a n s i o n  of 0. Therefore  

1 2 i l k  2 PA = p r o b a b i l i t y  of a b s o r p t i o n  = (A18) 

If  fik = 6~j, J = 1 ..... M t h e n  PA is clearly 1/M.  O n  the  o the r  h a n d ,  if the/~k 
are u n i f o r m l y  d i s t r i bu t ed  a n d  u n c o r r e l a t e d  t hen  f rom the  n o r m a l i z a t i o n  in  

(A17)  we aga in  have  the expected  va lue  o f p A  be ing  1/M.  
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